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Abstract

In this paper we discuss the use of an implicit Newton-Krylov method to solve a set of
partial differential equations representing a physical model of a blast furnace stove. Blast
furnace stoves are thermal regenerators used to heat the air injected into the blast furnace,
providing the heat to chemically reduce iron oxides to iron. The stoves are modeled using a set
of partial differential equations which describe the heat flow in the system. The model is used
as part of a predictive controller which minimizes the fuel gas consumption during the heating
cycle, while maintaining a high enough output air temperature in the cooling cycle to drive the
chemical reaction in the blast furnace. The discrete representation of this model is solved with
a preconditioned implicit Newton-Krylov technique. This algorithm uses Newton’s method, in
which the update to the current solution at each stage is computed by solving a linear system.
This linear system is obtained by linearizing the discrete approximation to the PDE’s, using
a numerical approximation for the Jacobian of the discretized system. This linear system is
then solved for the needed update using a preconditioned Krylov subspace projection method.

Nomenclature

Tg: Gas temperature (◦C)

Ts: Solid temperature (◦C)

ρg: Gas density (gm/cm3)

ρs: Solid density (gm/cm3)

Cg: Gas heat capacity (cal/gm-◦K)

Cs: Solid heat capacity (cal/gm-◦K)

Ag: Area of one tube in the solid (cm2)

As: Area of the solid surrounding a tube (cm2)

Lg: Perimeter of one tube in the solid (cm)

Pg: Gas pressure (cal/cm3)

h : Heat transfer coefficient (cal/cm2-sec-◦K)

ṁg: Gas mass flow rate (gm/sec)

∗This work was performed under the auspices of the Department of Energy under contract W–7405–ENG–36.
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i: Discrete time index

j: Discrete space index

k: Nonlinear iteration number

l: Linear iteration number

n: Total number of nonlinear equations

1 Introduction

This paper presents a set of partial differential equations representing a physical model of a blast
furnace stove which are then solved using an implicit Newton-Krylov method. The blast furnace
stove is an integral part of the iron making process in the steel industry. These stoves are used
to heat air which provides part of the energy required to chemically reduce iron ore to iron metal
in the blast furnace. Internally these stoves consist of a combustion chamber and a large mass
of refractory brick. The operation of the stoves is functionally divided into two phases. In the
first phase (heating cycle), the brick is heated by burning a mixture of combustible exhaust gas
from the blast furnace and natural gas in the combustion chamber and allowing this hot exhaust
gas to escape through tubes, called flues, in the brick. In the second phase (cooling cycle), air is
heated by forcing it through the flues in the heated brick and mixing the resulting hot air with
ambient air in the combustion chamber to maintain a constant output temperature. This hot air
provides part of the energy needed to drive the desired chemical reactions in the blast furnace.
The model is used as part of a predictive control system which reduces the cost of operating these
stoves by minimizing the natural gas consumption during the heating cycle, while still maintaining
the required output air temperature during the cooling cycle. A diagram of the stove is shown
in Figure 1. The chamber on the left in this diagram is where the fuel gas is burned during
the heating cycle. The chamber on the right contains the refractory brick, which is in a stack
approximately 36 meters high. The insert in Brick Zone #2 shows the shape of one of the bricks,
also called checkers. The heating cycle lasts approximately 50 minutes, and the cooling cycle lasts
about 30 minutes.

The previous modeling studies of hot blast stoves formed the basis for our model. The first
studies by Schofield, Butterfield, and Young (1961) and Hausen and Binder (1962) assumed con-
stant operating conditions, such as gas flow rates and inlet and outlet temperatures, constant
physical properties, such as heat capacities and heat transfer coefficients, and assumed that con-
ditions were the same for all sets of heating and cooling cycles. Variable heat capacities and heat
transfer coefficients were considered by Butterfield, Schofield, and Young (1963). Varying gas flow
rates were considered by Willmott (1968) and Kwakernaak, Strijbos, and Tijssen (1970). In these
works, radiation heat transfer from the gas to the solid during the heating cycle were approxi-
mated by modifying the convective heat transfer coefficient as discussed by Hausen and Binder
(1962). A detailed heat transfer model for blast furnace stoves is presented in this work. We
consider variation in all of the physical and operational conditions, both convective and radiative
heat transfer mechanisms, flow rate variations during both the heating and cooling cycles, and
process changes between sets of heating and cooling cycles.

2 Model Description

The blast furnace stove is modeled by assuming that the gas channels in the checkers can be
represented as thick walled tubes in which the gas flows through the center of the tubes thereby
heating or cooling the wall material. The outside wall of the tubes are assumed to be perfectly
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Figure 1: A diagram of a blast furnace stove. The chamber on the left is where combustion of the fuel gas
takes place. The chamber on the right contains the refractory brick. The insert in Brick Zone #2 shows
the shape of one of the bricks.

insulated. Heat transfer within the stove is modeled with a set of partial differential equations
(PDEs) that relate heat flux between the working gas and the storage solid, as presented in Bird,
Stewart, and Lightfoot (1960). An energy equation describes the transient heat conduction within
the storage brick, and the convective and radiative transport between the working fluid and the
storage medium. Specifically, the equations for the energy change in the gas and the solid during
the heating cycle are

ρg CgAg
∂Tg

∂t
= hLg (Ts − Tg)−

(
Cg
∂Tg

∂z
+

1

ρg

∂Pg

∂z

)
ṁg(t), (1a)

ρs CsAs
∂Ts
∂t

= hLg (Tg − Ts) , (1b)

ρg = u(Tg), (1c)

Cg = v(Tg), (1d)

Cs = w(Ts), (1e)

Pg = d(Tg), (1f)
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h = hc + hr = c(Tg) + r(Tg, Ts). (1g)

In these equations Tg(t, z) is the temperature of the gas, Ts(t, z) is the temperature of the solid,
and both vary over time t and space z. The densities of the gas and solid are ρg and ρs respectively.
The heat capacities at constant pressure for the gas and solid are Cg and Cs respectively. The
quantity Lg is the perimeter for a single tube in the brick. The quantity Ag is the area of one
tube in the solid, and As is the area of the solid surrounding any one tube. The quantity h is
the heat transfer coefficient between the gas and the solid, which consists of a portion hc due to
convection and a portion hr due to radiation between the gas and the solid. The gas pressure is
Pg, and the mass flow rate of gas through the stove is ṁg(t).

Equation (1a) is the change in energy over time for the gas, while Equation (1b) is the energy
change of the solid. The terms in these equations describe the convection of heat between the
gas and the solid in the direction perpendicular to the gas flow in the channels, and convection in
the gas parallel to the gas flow, other effects are neglected. Note that the only quantity available
for controlling the amount of heat in the stove is the mass flow rate ṁg(t). Equations (1c), (1d),
(1e), (1f), and (1g) describe the effect of gas and solid temperatures, Tg and Ts, on the gas density
ρg, gas heat capacity Cg, solid heat capacity Cs, gas pressure Pg, and heat transfer coefficient h.
Accounting for temperature variations is necessary because both the gas and solid temperatures
vary between 1600◦C and 200◦C. Equations (1c)–(1g) are described in Appendix A.

Similarly the differential equations for the energy change in the gas and the solid during the
cooling phase are

ρg CgAg
∂Tg
∂t

= hLg (Ts − Tg)−
(
Cg
∂Tg
∂z

+
1

ρg

∂Pg
∂z

)
ṁg(t), (2a)

ρs CsAs
∂Ts
∂t

= hLg (Tg − Ts) , (2b)

ṁg(t) =


∫ T targ

g

T in
g
Cg(τ)dτ∫ T out

g

T in
g
Cg(τ)dτ

 ṁin
g , (2c)

along with Equations (1c)–(1g). Note that radiative heat transfer is neglected during the cooling
phase. The air going into the blast furnace must be maintained at the constant temperature T targ

g .
In order to achieve this goal, not all of the air is routed through the stove during the cooling phase.
Rather, some of the air is diverted around the stove and is later mixed with the air heated by the
stove to maintain the desired outlet temperature. The inlet air temperature T in

g is measured and
varies over time. Since the temperature Tg(t) of the air heated by the stove changes over time,
the amount of air ṁg(t) routed through the stove must also change over time. This change in the
flow rate through the stove is defined by Equation (2c) and is referred to as the bypass equation.
The amount of air passing through the stove increases as the cooling phase progresses, due to the
cooling of the bricks. The total mass flow rate into the stove–bypass system ṁin

g is measured and
varies over time. A diagram depicting the mass and energy flow in the stove is shown in Figure 2.
Note that the directions of both heat and mass flow during the cooling cycle are opposite those
during the heating cycle. Several things should be noted about this system. First, Equations (1a)
and (1b) are identical to Equations (2a) and (2b). These equations are written in terms of flow
rate ṁg rather than gas velocity vg because flow rate is the quantity that is actually measured
and controlled in the stoves. The overall system defined by Equations (1) and (2) contains both
differential and algebraic equations, hence it is a system of differential algebraic equations (DAE).
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Figure 2: A diagram of the mass and energy flow in the stove for the two phases of its operation. The
area of the white circle is Ag, and the area of the gray annulus is As. The perimeter of the white circle is
Lg. Note that a cylindrical coordinate system, centered at the middle of the hole in the brick, is used in
this diagram.

The boundary conditions for the heating cycle model in Equation (1) are straightforward to
derive. The appropriate conditions are

Tg(t, ztop) = Tcomb, (3a)

∂Tg

∂z

∣∣∣∣
z=zbot

= 0, (3b)

Tg(theat, z) = g(z), (3c)

Ts(theat, z) = g(z), (3d)

where ztop is the spatial position of the top of the brick stack, zbot is the spatial position of the
bottom of the brick stack, and theat is the time that the heating cycle begins. The quantity Tcomb

is the combustion temperature of the gas burned in the combustion chamber, and the function
g(z) is a temperature profile interpolated from temperature measurements of the stove at the
end of the previous cooling cycle. Note that the same initial temperature profile is used in both
the gas and the solid, because we assume that the temperatures reach local thermal equilibrium
during the five minute transition between the heating and cooling cycles. Similarly the boundary
conditions for the cooling cycle model in Equation (2) are

∂Tg
∂z

∣∣∣∣
z=ztop

= 0, (4a)

Tg(t, zbot) = Tair, (4b)

Tg(tcool, z) = Tg(tcomp, z), (4c)

Ts(tcool, z) = Ts(tcomp, z), (4d)

where tcomp is the time that the heating cycle ends, and tcool is the time that the cooling cycle
begins. The quantity Tair is the measured temperature of the input air to the stove during the
cooling cycle. The initial temperature profiles in the gas and solid for the cooling cycle are the
final temperature profiles computed in the heating cycle. For both heating and cooling cycles the
spatial boundary condition is Dirichlet at the inlet side of the brick stack and Neumann at the
outlet side.
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For computational purposes, Equations (1) and (2) are scaled to make all the quantities di-
mensionless, and then discretely approximated. The scaling is performed to prevent the choice of
units from artificially altering the relative sizes of the terms in Equations (1) and (2). Define the
dimensionless scaling variables

T̂g =
Tg − Ti
T0

, T̂s =
Ts − Ti
T0

, P̂g =
Pg

Pg0
, t̂ =

t

τg0
, ẑ =

z

τg0 vg0
, ĥ =

h

h0
,

τg0 =
ρg0 Cg0Ag0
h0 Lg0

, τs0 =
ρs0 Cs0As0
h0 Lg0

, ρ̂g =
ρg

ρg0
, ρ̂s =

ρs
ρs0

, Ĉg =
Cg
Cg0

, (5)

Pg0 = ρg0 Cg0 T0, ˙̂mg(t̂) =
ṁg(t)

ρg0 vg0Ag0
, Âg =

Ag
Ag0

, Âs =
As
As0

, L̂g =
Lg
Lg0

, Ĉs =
Cs
Cs0

,

where vg0 is a reference gas velocity, τg0 is a characteristic time for heat flow in the gas, T0 is a
reference temperature for both the gas and solid, and Pg0 is a reference gas pressure. Substituting
these scaled variables into either Equations (1a) and (1b), or Equations (2a) and (2b) gives the
dimensionless partial differential equations

∂T̂g

∂t̂
=

ĥ L̂g
ρ̂g Ĉg Âg

(
T̂s − T̂g

)
−
(

1

ρ̂g Âg
∂T̂g
∂ẑ

+
1

ρ̂2
g Ĉg Âg

∂P̂g
∂ẑ

)
˙̂mg(t̂) (6a)

∂T̂s

∂t̂
=
τg0
τs0

ĥ L̂g
ρ̂s Ĉs Âs

(
T̂g − T̂s

)
(6b)

for both the heating and cooling cycles. In this equation, τs0 is a characteristic time for heat flow
in the solid, and ˙̂mg(t̂) is the dimensionless mass flow rate for the gas.

The finite-volume formulation was used to discretize Equation (6) in both space and time.
As discussed in Hirsch (1988), the computational domain is divided into some number of non-
overlapping control volumes such that only one grid point lies inside each control volume. This
set of control volumes must completely cover the original domain. The differential equations are
then integrated over each control volume. For discretizing the system, denote the states of the
system by the vector x† = [Tg Ts]. These integrals are evaluated by approximating the variation
of x between each grid point using piecewise profiles. This procedure results in a set of discrete
equations containing values of x for each grid point. Intuitively these discrete equations define
a conservation principle for x over the finite volume of each cell, just as the original differential
equations express it for an infinitesimal volume. The algebraic equations are assumed to be
constant over each control volume, so they can be removed from the volume integrals. As an
example consider discretizing an equation of the form Cg ∂Tg∂z ṁg(t) = 0. Applying Gauss’ theorem

to the volume integral gives
∫
V
Cg ṁg(t)

∂Tg
∂z dV = Cg

∫
V
∇ · (ṁg Tg) dV = Cg

∮
S
(ṁg Tg) · n̂ dS = 0.

In our problem, the dimensions of each control volume are identical, hence the discretized form of

this equation for the jth space point at the ith time point is Cg(i, j) ṁg(i)
Tg(i,j+1)−Tg(i,j)

∆z = 0. In
this particular example the result is identical to that obtained with the finite-difference method,
but in general this is not necessarily the case. Since this is a convection problem, the upwind-

difference scheme is used to discretize the term
∂T̂g
∂ẑ . This approach approximates the derivative of

the temperature at a node by taking the difference between the temperature at that node and the
temperature at the preceding node relative to the direction of the flow. Therefore if the direction
of flow changes, then the node defined as preceding also changes. This occurs in our problem
since the direction of gas flow through the stove reverses between the heating and cooling cycles.
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Using this approach the discretized form of the scaled differential equations in Equation (6) is

T̂g(i, j) − T̂g(i− 1, j)

∆t
=

ĥ(i, j) L̂g(i, j)
ρ̂g(i, j) Ĉg(i, j) Âg(i, j)

(
T̂s(i, j) − T̂g(i, j)

)
− 1

ρ̂g(i, j) Âg(i, j)

(
T̂g(i, j) − T̂g(i, j − 1)

∆z

)
˙̂mg(i)

− 1

ρ̂2
g(i, j) Ĉg(i, j) Âg(i, j)

(
P̂g(i, j + 1)− P̂g(i, j − 1)

2∆z

)
˙̂mg(i),

(7a)

T̂g(i, j) − T̂g(i− 1, j)

∆t
=

ĥ(i, j) L̂g(i, j)
ρ̂g(i, j) Ĉg(i, j) Âg(i, j)

(
T̂s(i, j) − T̂g(i, j)

)
− 1

ρ̂g(i, j) Âg(i, j)

(
T̂g(i, j + 1)− T̂g(i, j)

∆z

)
˙̂mg(i)

− 1

ρ̂2
g(i, j) Ĉg(i, j) Âg(i, j)

(
P̂g(i, j + 1)− P̂g(i, j − 1)

2∆z

)
˙̂mg(i),

(7b)

T̂s(i, j) − T̂s(i− 1, j)

∆t
=
τg0
τs0

ĥ(i, j) L̂g(i, j)
ρ̂s(i, j) Ĉs(i, j) Âs(i, j)

(
T̂g(i, j) − T̂s(i, j)

)
, (7c)

where j is the space node index and i is the time node index. Equation (7a) is the discrete energy
equation for the gas during the heating cycle, Equation (7b) is the gas energy variation for the
cooling cycle, and Equation (7c) is the solid energy change for both cycles. A time grid was used
because the mass flow rate ṁg during the cooling cycle varies over time due to the temperature
changes, as shown in Equation (2c). For simplicity we wanted to use the same solution approach
for both the heating and cooling cycles, hence a time grid is also used during the heating cycle.
The conditions at the initial time become conditions along a boundary of the time dimension
of our two dimensional grid. This treatment of time requires the temporal derivatives to be
incorporated into the Jacobian of the discrete system in the same manner that spatial derivatives
are normally incorporated.

3 Solution Technique

We chose an implicit Newton-Krylov technique to solve the discrete representation in Equation (7)
because the solution technique must be robust for systems having disparate eigenvalues in the
linear approximation, and it must provide rapid convergence without using tuning parameters.
The disparity in eigenvalues is created by the different time scales for convection in the gas,
and conduction in the brick. Rapid convergence is required in order to allow the controller to
compute the optimal mass flow rate for the fuel gas during the heating cycle during the short time
in between the end of a cooling cycle and the beginning of a heating cycle. Lastly, a parameter-
free method allows the use of the technique by operating personnel with limited experience in
non-linear solution techniques. The algorithm is an inexact version of Newton’s method, where
the update to the current solution at each stage is computed by approximately solving a linear
system. This linear system results from linearizing the discrete approximation to the PDE’s, using
a numerical approximation for the Jacobian of the discretized system. The resulting linear system
is solved iteratively for the needed update using a preconditioned Krylov subspace projection
method. Various methods of this type are discussed by Kelley (1995).

7



As indicated above, our solution technique breaks down naturally into two parts. The first part
consists of searching for a nonlinear update to the current solution. Conceptually, Equation (7)
can be rewritten as the vector equation f(Tg(i, j), Ts(i, j)) = 0. An approximate solution to this
differential algebraic system is given by a set of states Tg(i, j), and Ts(i, j) which make the value of
f(·) close to zero for each space point j and time point i. Intuitively, this is a root finding problem
in which the roots are functions of the distance j and the time i. The function f(·) is called the
nonlinear residual. Collectively the states are denoted by the vector x† = [Tg(i, j) Ts(i, j)]. The
root finding problem is to find the state x which minimizes the nonlinear residual f(x). One way
to solve this problem is to compute the second order Taylor series expansion of f(x) about the
point x

fi(x+ δx) = fi(x) +
n∑

m=1

∂fm
∂xm

δxm +O(δx2), (8)

where n = nv ns nt is the product of the number of state variables (i.e., nv = 2 in our case), the
number of grid nodes in space ns, and the number of grid nodes in time nt . Neglecting terms
of order δx2 and higher and setting f(x + δx) = 0, we obtain a set of linear equations for the
corrections δx that move each residual toward zero simultaneously. For the kth iteration of the
algorithm, the vector form of these equations is

Jf (xk) δxk = −f(xk), (9)

where Jf (xk) is the Jacobian matrix of the discrete system ∂fk
∂xk

. The corrections are added to
the solution vector giving the update rule

xk+1 = xk + αk δxk, (10)

where αk ∈ (0, 1] is a weighting factor to keep the algorithm from overshooting the solution. This
algorithm for root solving is commonly known as the Newton-Raphson method or simply Newton’s
method, as detailed in Fletcher (1987). The algebraic equations of state are recomputed using the
new temperature estimate xk+1 after each Newton iteration. The Newton iterations are stopped
when the criteria

‖f(xk)‖2 < τr ‖f(x0)‖2 + τa (11)

is satisfied. In this equation τr ∈ (0, 1) is the relative error tolerance, τa ∈ (0, 1) is the absolute
error tolerance, and ‖·‖2 is the Euclidean norm. Intuitively this criteria means that the Newton
iterations are stopped when either the current residual ‖f(xk)‖2 becomes less than τr of its initial
value ‖f(x0)‖2, or when it becomes less than τa.

The second part of the algorithm consists of finding the solution for the linear system in Equa-
tion (9). This equation is of the general form Ay = b, whereA is an (n×n) matrix. The method
that we use is a conjugate-gradient-like polynomial-based iterative scheme. The general solution
update is

yl = y0 + (γl0 r0 + γl1Ar0 + γl2A
2 r0 + · · · + γl(l−1)A

l−1 r0), (12)

where r0 = b−Ay0, rl is the linear residual at step l, and y0 is the initial guess for the solution
of the linear system. This means that the solution yl at step l is the initial solution y0 plus a
linear combination of vectors in the set {r0, Ar0, A

2 r0, . . . , A
l−1 r0}. The space spanned by

this set of vectors is the Krylov subspace, which is denoted by Kl(r0, A). Since new solution
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approximations are computed by projecting the linear residual rl onto a Krylov subspace, these
algorithms are collectively known as Krylov subspace projection methods, as discussed by Saad
(1996).

Equation (12) can be written in the simpler form yl = y0+
∑l

m=0 γlm pm. The manner in which
pl is computed defines a particular Krylov subspace method. In general, two criteria can be used
to compute the pl vectors. The first criterion is to pick pl to minimize some norm of the current
linear residual rl. The second criterion is to choose pl so that the the current linear residual rl is
orthogonal to some set of vectors Ll, where Ll may be different from Kl. Mathematically, these
two criteria are

min
pl∈Kl

‖rl‖N = min
pl∈Kl

∥∥∥∥∥r0 −A
l∑

m=0

γlm pm

∥∥∥∥∥
N

, (13)

rl =

(
r0 −A

l∑
m=0

γlm pm

)
⊥ Ll, (14)

where ‖·‖N represents an arbitrary norm. By satisfying the first criterion, the algorithm is guar-
anteed to converge to a solution which minimizes some measure of the error between the exact and
approximate solutions. By satisfying the second criterion, the algorithm is guaranteed to converge
in a finite number of iterations. The conjugate gradient algorithm is derived assuming that A is
symmetric positive definite, in which case both of these criteria can be satisfied simultaneously
with Ll ≡ Kl.

In most cases the Jacobian is not symmetric positive definite, hence both of the above cri-
teria can not be satisfied simultaneously. There are numerous algorithms based on different
implementations of one of these two criteria. The technique that we use is the Generalized
Minimal Residual (GMRES) algorithm developed by Saad and Schultz (1986). This algorithm
has three distinguishing features. First, it is guaranteed to minimize the 2-norm of the linear

residual ‖rl‖2 =
∥∥∥r0 −A

∑l
m=0 γlm pm

∥∥∥
2

= ‖b−Ayl‖2. Second, the search directions pl are

I-orthonormal, meaning that p†m pn = 0 for all m 6= n, and ‖pm‖2 = 1. Third, the linear residual

at any iteration is A-orthogonal to all previous search directions, meaning r†mApn = 0 for all
m > n. Another way to state the last condition is that the linear residual rl is orthogonal to the
Krylov subspace Ll = AKl(r0, A). The stopping criteria for the GMRES iterations is

‖rl‖2 < εr ‖r0‖2 + εa, (15)

where εr ∈ (0, 1) is the relative error tolerance and εa ∈ (0, 1) is the absolute error tolerance. The
explanation of this criteria is the same as that for the Newton stopping criteria.

The speed of convergence for finding the solution y of the linear systemAy = b depends on the
ratio of the maximum to the minimum eigenvalues of the matrix A. If this ratio is large, then A
is said to be poorly conditioned. In many practical cases A is so poorly conditioned that Krylov
methods, such as GMRES, do not converge at all. Preconditioning makes a linear system easier
to solve by improving its condition number. Preconditioning is accomplished by multiplying both
sides of the linear system by a matrix P which resembles A−1 in some sense. The matrix P can
be multiplied on either the left or right hand sides of the original system, giving rise to one of two
new systems

P Ay = P b, (16a)

9



AP u = b, u = P−1 y. (16b)

Equation (16a) is the new system under left preconditioning, and Equation (16b) is the new system
under right preconditioning. In our application a right preconditioner is applied to Equation (9)
prior to solving for the linear correction δxk using GMRES.

The preconditioner used in this application is an incomplete LU factorization of the Jaco-
bian matrix Jf (xk) with threshold dropping and diagonal compensation, called MILUT by Saad
(1996). Incomplete LU factorization consists of performing Gaussian elimination on the matrix
A and dropping some elements from the intermediate matrix LUm at each step m of elimina-
tion. This procedure guarantees that the matrix obtained at the final step of this incomplete
factorization LUn is sparse, which would generally not be the case for the matrix obtained
by Gaussian elimination. At the mth elimination step, the element LUm(u, v) is dropped if

|LUm(u, v)| < η
‖LUm(u,·)‖∞
|LUm(u,u)| , where LUm(u, ·) is the uth row of the matrix LUm, LUm(u, u) is

the diagonal element of the uth row, η ∈ (0,∞) is the drop tolerance parameter, and ‖·‖∞ is
the infinity norm. The diagonal entries LUm(u, u) at each iteration are compensated for the
dropped terms by subtracting a weighted sum of the dropped terms from the diagonal entry
LUm(u, u) = LU∗m(u, u)−µ

∑
q=drop LUm(u, v), where LU∗m(u, u) is the diagonal entry computed

by elimination, and µ ∈ [0, 1] is the compensation parameter. The matrix obtained after the last
step of incomplete elimination LUn is used as the preconditioner matrix P , so P = LUn.

This solution technique has numerous positive features. It has been proven in Dembo, Eisenstat,
and Steihaug (1982) that the upper bound on the convergence rate of inexact Newton’s method is
superlinear. Likewise it was shown in van der Vorst and Vuik (1993) that the convergence bound
for GMRES is also superlinear. Since the algorithm is implicit we can follow any time or space
scale in the problem, rather than being forced to follow the fastest time scale or smallest space
scale, as in explicit methods. This algorithm directly minimizes both the absolute and relative
error of the solution. Because this method is based on root finding, the resulting solution is one
for which f(xk) ≈ 0, and ‖xk+1 − xk‖N ≈ 0 for some iteration k. Also this algorithm has modest
memory requirements, and has very few, if any, parameters.

This solution algorithm also has some negative features. In practice Newton’s method often
diverges unless it is started fairly close to a root. Furthermore, for roots with order greater than
one, the upper bound on the convergence rate is linear. In this application, although both of these
difficulties are still possible, there is one feature of the problem which simplifies matters. For a
well-posed system of differential equations, there is a unique real-valued solution which depends
continuously on the initial and boundary conditions. Assuming that this is also true for the
discretized system, there is only one real root for f(xk) = 0. The fact that there is only one real
root may simplify the task of computing it. Newton’s method can be made more robust to the
initial guess by adjusting the size of the Newton step taken in each iteration k using the parameter
αk in Equation (10). A number of line search methods for accomplishing this are discussed in
Dennis and Schnabel (1983). Another potential difficulty is that GMRES is not guaranteed to
converge in a finite number of iterations. This difficulty is dealt with by preconditioning the linear
system in Equation (9). The goal of preconditioning is to make this equation much easier to solve
without expending much computational effort constructing the preconditioner.

10



4 Simulation Results

First we will discuss the agreement between our model and measurements from the stoves. One
measure of the state of the stove during the heating and cooling cycles is the temperature of the
bricks in the stove. Three temperature measurements are made within the brick stack in the
stove. The first is at the top of the brick stack (dome), the second is 11 meters down from the
top of the stack (interface), and the third is at the bottom of the stack (grid). These temperature
measurements are recorded at 15 second intervals throughout each stove cycle. Another measure
of the state of the stove for which data is available is the amount of air sent through the stove
during the cooling cycle. This is expressed as the mass flow rate through the stove as a function of
time during the cooling cycle, and it is measured every 15 seconds. Using the model, it is possible
to compute a temperature at each of the measurement positions over a heating and cooling cycle
and a mass flow rate through the stove during the cooling cycle. Four plots comparing the actual
and simulated time evolution of these four quantities are shown in Figure 3.

In each of these graphs the solid lines are the measured quantities and the dashed lines are the
simulated quantities. All simulated temperatures shown are solid temperatures. Figure 3(a) shows
the dome temperature versus time, Figure 3(b) plots time evolution of the interface temperature,
Figure 3(c) illustrates the grid temperature over time, and Figure 3(d) graphs the mass flow
rate through the stove during a cooling cycle. Based on these plots there appears to be good
agreement between our model and the measured data, expect for the dome temperature. As
shown by Figure 3(a), the measured dome temperature does not change very much over time. We
believe that the dome temperature sensors are unreliable and inaccurate and consequently these
readings are poor measurements of the brick temperature at the top of the stack. The disparity
between the measured and computed mass flow rate through the stove in Figure 3(d) is due to
neglecting the heat stored in the brick lining of the combustion chamber in our simulation. These
plots illustrate that the system does not reach thermal equilibrium during either the heating or
cooling cycle, since the time derivatives of the temperature measurements are clearly not zero
during these cycles. Note that there are only three temperature measurements being made down
the entire length of the stove. One problem in assessing the validity of the model is this lack of
measurements from the actual system. The flat spots in the simulated temperature values are
due to the presence of two cycles of stove operation that are unmodeled. The first unmodeled
cycle occurs between the end of a heating cycle and the beginning of a cooling cycle. In this
cycle, the pressure inside the stove is increased from one atmosphere to five atmospheres over a
period of five minutes. The second unmodeled cycle occurs between the end of a cooling cycle
and the beginning of a heating cycle. In this cycle, the pressure inside the stove is decreased from
five atmospheres to one atmosphere over a period of five minutes. Our studies indicate that the
initial and final solid temperatures are roughly equal for both of these cycles, therefore we did
not attempt to model them.

Next we will discuss the convergence properties of our Newton-Krylov implementation with
respect to both the number of Newton iterations to approximately solve f(x) = 0 and the number
of linear iterations to approximately solve Equation (9). As discussed in Luenberger (1984), the
rate of convergence of a sequence {un}∞n=0 which converges to a limit u∗ can be assessed by

computing β = limn→∞
‖un+1−u∗‖
‖un−u∗‖p where p is a positive integer. The order of convergence is the

largest number p for which 0 ≤ β < ∞. If p = 1 and 0 < β < 1, then the convergence rate is
said to be linear. If p = 1 and β = 0, then the convergence rate is superlinear. If p = 2, then
the convergence rate is quadratic. For example, given a real number a such that 0 < a < 1, the
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Figure 3: (a) The dome temperature in ◦C versus time in minutes for both a heating and cooling cycle.
The solid line is the measured data and the dashed line is the simulated data.
(b) The interface temperature versus time.
(c) The grid temperature versus time.
(d) The mass flow rate through the stove in kg/s versus time in minutes for a cooling cycle.

sequence un = an converges linearly, the sequence un = an
2

converges superlinearly, and un = a2n

converges quadratically. The convergence properties of the Newton-Krylov algorithm for this
application are illustrated in Figure 4. Figures 4(a) and 4(b) plot the nonlinear residual ‖f(xk)‖2
versus the nonlinear iteration k during a heating cycle and a cooling cycle respectively. These two
figures show the convergence of Newton’s method while solving for the final solution xfin using
Equation (10). Similarly, Figures 4(c) and 4(d) plot the linear residual ‖f(xk) + Jf (xk) δxl‖2
versus the total number of linear iterations l during a heating cycle and a cooling cycle respectively.
These two figures show the convergence of MILUT preconditioned GMRES while solving for δxk
with Equation (12) during each nonlinear iteration of each cycle. Note that Figures 4(c) and
4(d) show all the linear iterations taken during a heating cycle and a cooling cycle respectively.
The points connected by the dashed lines in these two figures are the nonlinear residual values
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Figure 4: (a) The convergence of the residual ‖f(xk)‖2 for Newton’s method while solving for xfin using
Equation (10) during a heating cycle.
(b) The residual convergence for Newton’s method during a cooling cycle.
(c) The convergence of the residual ‖f(xk) + Jf (xk) δxl‖2 for MILUT preconditioned GMRES while
solving for δxk in Equation (9) during a heating cycle.
(d) The residual convergence for MILUT preconditioned GMRES during a cooling cycle.

shown in Figures 4(a) and 4(b). This means that the number of linear iterations for each nonlinear
iteration can be deduced by counting the number of points between adjacent points on the dashed
line. Notice that the vertical axes of all these plots are logarithmic. Intuitively, on a semi-
logarithmic plot, a sequence which converges linearly will appear as a straight line. A sequence
converging faster than linearly will have a negative curvature (i.e., curving downward) and one
converging slower than linearly will have positive curvature (i.e., curving upward). Therefore
Figures 4(c) and 4(d) indicate that MILUT preconditioned GMRES is converging superlinearly.
Figures 4(a) and 4(b) indicate that Newton’s method is converging linearly. We believe that
the large number of algebraic equations in our model is limiting the nonlinear convergence rate.
Another way to assess convergence rate is by computing the number of iterations required to
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reduce the the residual by a factor of 10. This quantity is computed by evaluating the expression

λ =
kf−ki

log(‖f(xki)‖2
)−log

(∥∥∥f(xkf )
∥∥∥

2

) where ki is the initial and kf is the final nonlinear iteration

number. For the heating cycle shown in Figure 4(a), λheat = 0.542 nonlinear iterations are
required to reduce the residual ‖f(xk)‖2 by a factor of 10, and for the cooling cycle in Figure 4(b)
λcool = 0.809 iterations are needed. So in spite of the fact that the nonlinear convergence rate is
linear, the rate of decrease for the residual is acceptably fast.

We also investigated convergence with respect to the number of time and space nodes for the
discrete approximation in Equation (7). Intuitively, as the the number of nodes is increased, the
cell volume in the discretization is decreased, and at some point the changes in the simulation
results should become very small. One appropriate metric for evaluating the simulation results is
the error between the energy change in the gas and the energy change in the solid for a heating
or cooling cycle. The energy changes in the gas and solid for the discrete system, and the relative
error between these two quantities, are given by

∆Eg =
nt∑
j=1

ṁg(j)

(∫ T out
g

T in
g

Cg(Tg) dTg

)
∆t, (17a)

∆Es =
ns∑
i=1

ρs(i)As

(∫ Tfin
s

T init
s

Cs(Ts) dTs

)
∆z, (17b)

∆Eerror = 100
∆Eg −∆Es

∆Es
. (17c)

In this equation, T in
g and T out

g are the inlet and outlet gas temperatures respectively, T init
s and T fin

s

are the initial and final solid temperatures, nt is the number of time nodes, ns is the number of
space nodes, ∆t is the size of one time step, and ∆z is the size of one space step. As the number
of time nodes goes to infinity nt →∞, the sum in Equation (17a) becomes an integral over time
t. Likewise, as the number of space nodes goes to infinity ns → ∞, the sum in Equation (17b)
becomes an integral over space z.

We performed a grid convergence study by computing the relative energy error ∆Eerror as a
function of both the number of time nodes nt and the number of space nodes ns. In this study
the number of time nodes for the cooling cycle was one half the number of time nodes during the
heating cycle because the cooling cycle is roughly half as long as the heating cycle. The results
of these computations are plotted in Figure 5. Figures 5(a) and 5(b) plot the relative energy
error ∆Eerror versus the number of time nodes nt for various space node values for the heating
and cooling cycles respectively. In these two graphs, each set of similar points connected by a
dotted line corresponds to a different number of space nodes. Similarly, Figures 5(c) and 5(d)
plot the relative energy error ∆Eerror versus the number of space nodes ns for various time node
values for the heating and cooling cycles respectively. Likewise, for these two graphs each set
of connected similar points represents a different number of time nodes. It is clear from these
plots that the relative energy error ∆Eerror approaches zero for a sufficiently large number of time
and space nodes during both the heating and cooling cycles. There are errors associated with
both the discrete approximation of the differential equations in Equation (7) and the discrete
approximation of the integrals in Equation (17). The effect of these errors is most clearly seen in
Figures 5(b) and 5(d) where ∆Eerror is positive for a small number of nodes and becomes negative
for a large number of nodes.

To minimize the computation time while still maintaining sufficient accuracy, we chose the
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Figure 5: (a) The relative energy error ∆Eerror versus the number of time nodes nt for the heating cycle
for various numbers of space nodes ns.
(b) The energy error versus the number of time nodes for the cooling cycle.
(c) The relative energy error ∆Eerror versus the number of space nodes ns for the heating cycle for various
numbers of time nodes nt.
(d) The energy error versus the number of space nodes for the cooling cycle.

coarsest grid for which the solution became invariant to the number of grid nodes based on
Figure 5. Specifically we used 100 space nodes over the 36 meter length of the stove, 30 time
nodes over the 50 minute heating cycle, and 20 time nodes over the 30 minute cooling cycle.
With these choices for the grid spacing the relative energy balance error is on the order of 0.25%.
This error can be reduced by using additional grid points, as shown in Figure 5, at the expense
of greater computation time. For the purposes of this model, a relative energy balance error
on the order of 0.25% is acceptable. These grid spacing choices mean that there are n = 6000
nonlinear equations f(·) of the forms given by Equations (7a) and (7c) during the heating cycle,
and n = 4000 nonlinear equations f(·) as specified in Equations(7b) and (7c) during the cooling
cycle. It is clear from Equations (7a) and (7b) that the portion of the Jacobian Jf (·) associated
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with the discrete gas energy equations has four bands. One band is the diagonal, and the other
three are off-diagonal. The off-diagonal bands are associated with the temporal derivatives, the
spatial derivatives, and the coupling between the gas and the solid, with one band for each of
these terms. Likewise from Equation (7c), the portion of the Jacobian Jf (·) for the discrete solid
energy equations has only three bands, because there are no spatial derivatives in this equation.

5 Conclusion

In this paper we have presented a physical model of a blast furnace stove which was solved with an
implicit Newton-Krylov algorithm. Our heat transfer model allows for variation of both physical
and operational parameters and utilizes transient dynamics. The model is used as part of an
adaptive predictive controller which minimizes the natural gas consumption during the heating
cycle, while still maintaining the necessary air temperature during the cooling cycle. This control
system has been running for over six months and company audits indicate that it has reduced
natural gas usage by 5%, as detailed in Muske et al. (1999). The Newton-Krylov technique was
selected for several reasons. It is robust for solving systems having components which evolve at
very different time scales. In this application, this problem is particularly acute during the cooling
cycle wherein the time scale of the bypass computation in Equation (2c) is much faster than the
time scale of the gas heating in Equation (2a), which is in turn much faster than the time scale
of the brick cooling in Equation (2b). The algorithm converges rapidly to a solution, which is
necessary because the control system must compute a fuel gas flow rate history for the upcoming
heating cycle during the five minute pause between cooling and heating cycles. The method is
also parameter-free which is needed because the operators have no experience with non-linear
differential equation solvers.
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A Algebraic Equations of State

In this appendix the algebraic equations of state in Section 2 are discussed. Assuming that the
gas is ideal gives the gas density equation

ρg =
PgMg

RTg
, (18)

where Pg is the gas pressure, Tg is the gas temperature, Mg is the average molecular weight, and
R is the ideal gas constant.

Assuming that the pressure drop in the stove is due to frictional losses from the gas moving
through a pipe results in the relationship

∆Pg
∆z

=
F ṁ2

g

2 ρg Dg A2
g

, (19a)

Fw =
1(

3.48− 1.73 ln

(
2 ν

Dg
+

42.5

Re0.9

))2 , (19b)

Fc =
κDg
Hc

, (19c)

F = Fw + Fc, (19d)

where F is the friction factor for gas flow in the tubes, and Dg is the hydraulic diameter of a
single tube. Equation (19a) is a correlation discussed in Bird et al. (1960) for the pressure drop
in a pipe due to friction under turbulent flow conditions. Equation (19b) is a friction factor
correlation for rough pipes due to Jain (1976) in which the equivalent sand roughness ν of the
checker material is taken to be similar to that of concrete. A value of ν = 0.02 was determined
from a plot of equivalent sand roughness for commercial pipe surfaces in Bhatti and Shah (1987).
Equation (19c) is an equivalent friction factor derived from the model in Fox and McDonald
(1985) for pressure changes due to expansion or contraction in a pipe. Depending on the direction
of gas flow, there are either expansions or contractions in the gas tubes due to a slight taper in
the tubes of each checker. Specifically, the top diameter of the gas channel is 4 mm less than the
bottom diameter. This design is intended to increase the heat transfer in the stove by making the
flow more turbulent. The expansion loss coefficient for the heating cycle was chosen as κ = 0.07,
a contraction loss coefficient of κ = 0.06 was chosen for the cooling cycle, and the average checker
length was specified as Hc = 15.3cm. The loss coefficient values were determined from the area
ratio between the gas channels at the top and bottom of the checkers as computed in Fox and
McDonald (1985).

The heat transfer coefficient h consists of convective and radiative components that are

hc =
kg

Dg

(
F
2

)
(Re−1000)Pr

1 +

√
F
2

√√F
2
ν Re

(17.42 − 13.77
(
1.01 − 0.99 Pr0.36

)0.8)− 8.48

 , (20a)

hr = σεs
(αh + αc)T

4
s − (εh + εc)T

4
g

Ts − Tg
. (20b)
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Equation (20a) is a convective heat transfer correlation for rough pipes described by Bhatti and
Shah (1987). In this equation kg is the gas thermal conductivity, Re is the Reynolds number, and
Pr is the Prandtl number. This correlation is valid for Reynolds numbers greater than 2300 and
Prandtl numbers greater than 0.5. The Reynolds number range is 2500–5500 during the heating
cycle, and 4500–9500 during the cooling cycle. The Prandtl number range is 0.6–0.8 during typical
stove operation. Equation (20b) is based on the analysis in Hottel (1954). In this equation σ

is the Stephan-Boltzmann constant, εs is the emissivity of the tube wall, εh is the water vapor
emissivity at Tg, εc is the carbon dioxide emissivity at Tg, αh is the water vapor absorptivity
at Ts, and αc is the carbon dioxide absorptivity at Ts. The emissivity and absorptivity values
as functions of temperature and pressure for water vapor and carbon dioxide are determined by
interpolating the chart data presented in Hottel (1954). For the operating range of the stove, the
chart values were determined from experimental measurements of total emission, as reported in
Tien (1968) and Sparrow and Cess (1978). The tube wall emissivity εs is assumed to be that of
refractory brick, and is estimated to be 0.8 for each of the checker materials based on data from
Singham (1962) and Sparrow and Cess (1978).

The heat capacity Cg, viscosity µg, and thermal conductivity kg as functions of the gas temper-
ature Tg for the gas components during the heating and cooling cycles were determined by fitting
the data in Hilsenrath (1955). The resulting interpolating functions are shown in Table 1. When

Gas Cg(Tg) (cal/gm-K) µg(Tg) (cm/gm-sec) kg(Tg) (cal/cm-sec-K)

CO2 0.3628 − 77.0

Tg
+

8623.0

T 2
g

−1.225e−4 + 3.107e−8Tg+
1.518e−5

√
Tg

3.749e−5 + 3.559e−7Tg−
6.050e−6

√
Tg

H2O 1.267 − 34.65√
Tg

+
378.4

Tg

−7.962e−4 + 2.963e−5
√
Tg+

6.767e−3√
Tg

−3.977e−4 + 1.514e−5
√
Tg+

3.123e−3√
Tg

N2

0.2164 + 7.299e−5Tg−
1.361e−8T 2

g −
947.2

T 2
g

−1.044e−4 − 2.656e−8Tg+
1.679e−5

√
Tg

−5.330e−5 − 8.804e−9Tg+
6.842e−6

√
Tg

O2 0.3003 − 46.64

Tg
+

6541.0

T 2
g

−8.908e−5 + 5.972e−8Tg+
1.602e−5

√
Tg

−3.683e−5 + 5.559e−8Tg+
4.863e−6

√
Tg

Air

0.2566 − 1.211e−4Tg+
2.778e−7T 2

g − 1.765e−10T 3
g +

3.773e−14T 4
g

−5.769e−5 + 1.534e−5
√
Tg−

4.031e−4√
Tg

−8.278e−5 + 7.445e−6
√
Tg+

2.882e−4√
Tg

Table 1: Interpolating functions for heat capacity Cg, viscosity µg, and thermal conductivity kg with
respect to temperature Tg for all the gases needed in the model calculations.

computing the viscosity and thermal conductivity for the blast air during the cooling cycle, the
oxygen and moisture injected into this air are ignored because they are each less than 2 mol%.
Using the technique in Reid, Prausnitz, and Poling (1987), the pressure correction from 1 atm
to the blast pressure of approximately 5 atm is estimated to be less than 1% for the blast air
viscosity and less than 4% for the blast air thermal conductivity, and so this effect is also ignored.
The viscosity of the waste gas during the heating cycle is determined from the pure component
viscosities using the method of Wilke from Reid et al. (1987)

µm =
n∑
i=1

yi µi∑n
j=1 yj φi,j

, (21)
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in which µm is the viscosity of the mixture, yi is the mole fraction of component i, µi is the
viscosity of pure component i, and the interaction parameter φi,j is computed by

φi,j =

(
1 +

(
µi
µj

) 1
2
(
Mj

Mi

)1
4

)2

√
8

(
1 +

Mi

Mj

) , (22)

with Mi the molecular weight of component i. The thermal conductivity of the waste gas is
determined from the pure component thermal conductivities using the method of Mason and
Saxena in Reid et al. (1987)

km =
n∑
i=1

yi ki∑n
j=1 0.85 yj φi,j

, (23)

in which km is the mixture thermal conductivity, yi is the mole fraction of component i, ki is
the thermal conductivity of pure component i, and φi,j is the interaction parameter shown from
Equation (22).
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